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Schizophrenia is a severe neuropsychiatric disorder with a strong and complex genetic background.
Recent genome-wide association studies (GWAS) have successfully identified several susceptibility loci of
schizophrenia. In order to interpret the functional role of the genetic variants and detect the combined
effects of some of these genes on schizophrenia, protein-interaction-network-based analysis (PINBA) has
emerged as an effective approach. In the current study, we conducted a PINBA of our previous GWAS data
taken from the Han Chinese population. In order to do so, we used dense module search (DMS), a method
that locates densely connected modules for complex diseases by integrating the association signal from
GWAS datasets into the human protein—protein interaction (PPI) network. As a result, we identified one
gene set with a joint effect significantly associated with schizophrenia and gene expression profiling
analysis suggested that they were mainly neuro- and immune-related genes, such as glutamatergic gene
(GRM5), GABAergic genes (GABRB1, GABARAP) and genes located in the MHC region (HLA-C, TAP2,
HIST1H1B). Further pathway enrichment analysis suggested that these genes are involved in processes
related to neuronal and immune systems, such as the Adherens junction pathway, the Neurotrophin
signaling pathway and the Toll-like receptor signaling pathway. In our study, we identified a set of
susceptibility genes that had been missed in single-marker GWAS, and our findings could promote the
study of the genetic mechanisms in schizophrenia.

Crown Copyright © 2013 Published by Elsevier Ltd. All rights reserved.

1. Introduction

detecting significant markers. The traditional GWAS typically
investigate the genetic effect of a single SNP at a time and it account

Schizophrenia is highly heritable and complex psychiatric dis-
order with a lifetime prevalence of ~1% and estimated heritability
of ~64—80% (Lichtenstein et al., 2009; Thaker & Carpenter, 2001).
In recent years, researchers have used genome-wide association
studies (GWAS) to successfully identify several susceptibility loci
for the disease (O’Donovan et al., 2008; Purcell et al., 2009; Shi
et al., 2009; Yue et al,, 2011). These GWAS analyses focused on
finding the strongest single-nucleotide polymorphisms (SNPs) that
met the genome-wide significance cutoff P-value of 5 x 10~ for
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for only a small proportion of the heritability of schizophrenia,
leaving a large portion of the disease’s susceptibility unexplained
(Eichler et al., 2010; Manolio et al., 2009). Furthermore, schizo-
phrenia is believed to be a multigenic disorder that involves many
genes functioning at various stages of disease development. Due to
its complex genetic architecture and joint effects among these
genes, the overall effect of a gene network is expected to have a
greater effect than the sum of individual effect of each gene.
Therefore, pathway- and network-based methods have been
developed to provide functional links to bridge the knowledge gap
between the genetic variants and the phenotypes. Combining with
the results from GWAS, these approaches can assess whether a
group of genes or pathways with related functions are jointly
associated with a trait of interest and generate specific hypothesis
for follow-up experimental studies (Sun, 2012).
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Compared to pathway-based analysis (PBA), network-based
analysis (NBA) of GWAS data has advantages in the following as-
pects (Jia et al., 2012). First, PBA see the whole pathway as a single
unit, however, the association signals from GWAS might cover only
a small portion of the pathway reducing its power. Unlike PBA, NBA
searches dynamic gene sets, thus relieving the limitation of fixed
size in a pathway. Second, the definition of canonical pathway is
incomplete and the genes in the pathway cover only a small portion
of genes from the GWAS data. For example, the KEGG database
covered 5000—5500 genes (Kanehisa, Goto, Furumichi, Tanabe, &
Hirakawa, 2010). However, a recent analysis of protein—protein
interaction (PPI) data from multiple sources has reconstructed the
human PPI network by recruiting ~ 12,000 proteins and ~ 60,000
protein interaction pairs (Jia, Zheng, Long, Zheng, & Zhao, 2011).

Protein-interaction-network-based analysis (PINBA) of GWAS
data is a recently developed network-based method for identifying
susceptibility genes that investigates whether a set of genes with
related function is jointly associated with a trait or disease. Instead
of focusing on whether or not SNPs are individually significant,
PINBA combines GWAS results with prior biological knowledge
about protein-interaction to assess associability. This approach may
generate new susceptibility genes and provide novel hypotheses for
follow-up experiments. PINBA has previously been applied to the
research of the underlying biological mechanisms involved in
complex diseases, successfully yielding the relevant networks and
new susceptibility genes (Baranzini et al., 2009; Jia et al., 2011; Lu
et al., 2013). And we intend to find novel susceptibility variants or
genes for schizophrenia, PINBA could find susceptibility genes
based on SNP-level P-value. Presently, no supportive PINBA find-
ings of schizophrenia have been reported in the Chinese Han
population.

In the current study, we performed a PINBA on our own previ-
ously collected GWAS data (Yue et al,, 2011) in order to identify
some underlying genetic factors of schizophrenia in the Han Chi-
nese population. First, we performed a PINBA using the Dense
Module Searching (DMS) method (Jia et al., 2011), which searched
for and assessed dense modules involved in disease pathophysi-
ology by incorporating GWAS datasets into the PPI network.
Following the PINBA, we conducted gene expression profiling
analysis and pathway enrichment tests of the module genes that
we identified in search of a better understanding of the underlying
biological processes of schizophrenia. We found that the resultant
genes are mainly neural- and immune-related and more likely to
interact and take part in the same or related pathways. Of note,
additional susceptibility genes were proposed through this
approach.

2. Materials and methods
2.1. GWAS data and protein—protein interaction (PPI) datasets

We used the GWAS data from a study we previously conducted
(Yue et al., 2011). Our GWAS samples (768 schizophrenia cases and
1733 normal controls) came from individuals of Han Chinese
ancestry, genotyped with Illumina Human610-Quad BeadChips. In
quality control, we examined potential genetic association based on
pairwise identity-by-state analysis for all of the successfully geno-
typed samples. Upon identification of any probable first- or second-
degree relatives pair, we removed one of the two likely related
individuals (whichever subject had the lower call rate). One
schizophrenia case and two controls were removed because of
either missing genotype rates greater than 0.1 or relative rela-
tionship with another subject. After quality control, we excluded
SNPs with call rates less than 90%, minor allele frequencies less than
5%, and Hardy-Weinberg equilibrium P-value less than 1 x 10~ in

the controls. After quality control filtering, a total of 448,734
autosomal SNPs in 746 schizophrenia cases and 1599 normal con-
trols were retained for PINBA.

The study was approved by the Medical Research Ethics Com-
mittee of the Institute of Mental Health, Peking University. All
participants were given detailed verbal and written information
regarding the purpose and procedures of the study. Written con-
sents were obtained from the patients and/or their parents, and all
healthy participants enrolled in this study.

We downloaded PPI datasets from the Protein Interaction
Network Analysis (PINA) platform (http://cbg.garvan.unsw.edu.au/
pina/). To ensure the reliability of the PPI data, we included only
those interactions with experimental evidence proving that they
took place between human genes. The final network included a
total of 11,996 distinct proteins and 72,506 interaction sets.

2.2. PINBA

In the current study, we used a PINBA approach proposed by Jia
et al. (2011), in which the dense module search (DMS) method is
conducted in an R package that they developed, called ‘dmGWAS’
(http://bioinfo.mc.vanderbilt.edu/dmGWAS.html). Our analysis
consisted of three main steps.

1) First, a SNP from the GWAS data was mapped to a gene if its
position was within that gene’s National Center for Biotech-
nology Information (NCBI) annotated start and stop coordinates.
In order to account for variants in potential gene control regions,
we also included SNPs located 20 kb upstream and 20 kb
downstream of each gene. We selected the most significant SNP,
whose P-value was smallest among the SNPs within a gene, to
represent the extent of association of gene with the
schizophrenia.

2) Using the DMS method, we searched for the subnetwork, or
module, that owned a maximum proportion of low P-value
genes within the whole human PPI network. A score (Z;;) was
computed using the following formula:

In = > Zi/vw i=(1,2,3..w)

w represented the number of genes within a module. Z; was
computed using the formula: Z; = ¢~ ' (1 — P;), where ¢! repre-
sented the inverse normal distribution function (Ideker, Ozier,
Schwikowski, & Siegel, 2002) and P; represented the P-value of a
gene. Then, we performed a searching strategy with different pa-
rameters in the dmGWAS software (i.e. d and r). The parameter
d represented a predefined distance constraint and r was the rate of
proportion increment, nodes will be added if the increment is
greater than Z; x r. In previous study, based on the fact that the
median distance between any two proteins in the human PPI
network is less than 5 and parameter d has a marginal effect on the
results, it’s recommended that d is set as the default value 2.
However, the parameter r has a substantial effect on the results.
When r is small, it applies a loose restriction during the module
expanding process; thus, unrelated nodes might be included. On
the other hand, when r is large, a strict restriction is imposed and
only those nodes with very high Z; value could be included (Jia et al.,
2011). Therefore, we compared the resultant modules generated
under parameter d = 2 and different r values (0.05, 0.1, 0.15 and 0.2)
and chose the appropriate parameters for later analysis. Finally, we
performed DMS with the appropriate parameters.

3) To assess the significance of the identified modules, we built two
distributions under two hypotheses (Jia et al.,, 2011). The first
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null hypothesis was that there is no difference between the
identified modules and modules randomly selected from the
whole network (Jia et al., 2011). If a module had n genes, we
randomly chose the same number of genes from the whole
network, computed Z;, and denoted it by Z; (k). To achieve
sufficient randomization, this process was repeated 100,000
times. A score (Zy) was computed with the following formula:

Zm — mean(Zy (k))

N 5D Z)

Accordingly, Zy was adjusted for gene size and used to compare
different modules. Furthermore, Zy could be transformed back to P-
value (Pz,).

The second null hypothesis was that there is no association
between the modules and schizophrenia (Jia et al., 2011). We per-
mutated the disease labels of all samples using PLINK (Purcell et al.,
2007), while maintaining the same case/control ratio. During each
permutation (denoted by =), we repeated the calculation of Z; as
described above, except that the disease phenotypes were obtained
from permutation. We denoted the corresponding Z, score by Z,
(). A empirical P-value (Pper) was then computed for each module
by counting the number of permutations that have Z,, () greater
than the real case, divided by the total number of permutations
(N = 1000). Modules with Pper < 0.01 were considered statistically
significant. The simple two-step correction procedure effectively
adjusted for different sizes of genes and preserved the type I error
rate below a certain threshold (Jia et al., 2011; Wang, Li, & Bucan,
2007).

After identification of the top-ranking modules, we searched the
literature to see if the resultant genes were known as human
schizophrenia candidate genes. We used the GWAS catalog devel-
oped by Hindorff et al. (2009). We also compared the resultant
genes to the work of Ayalew et al. (2012), because they integrated
many pivotal datasets from schizophrenia studies, the genes
identified represent high confidence candidate genes for
schizophrenia.

2.3. Gene expression profiling analysis and pathway enrichment
test

To assess cell-specific expression of the identified genes in the
modules, we assessed the genes with an online tool Gene Enrich-
ment Profiler (http://xavierlab2.mgh.harvard.edu/Enrichment
Profiler/). This profiler computes the expression and enrichment
of any set of query genes on the basis of a reference set obtained
from 126 normal tissues and cell types (represented by 557
microarrays). For the enrichment analyses, the ‘Gene Enrichment
Profiler’ calculated the enrichment score using the Linear Models
for Microarray Data (LIMMA) module in bioconductor. Given a large
body atlas size data set, each tissue is compared pairwise to each of
the other tissues and then a linear model coefficient for each
pairwise comparison was computed. That coefficient is a measure
of difference between two groups. Significant coefficient is P-value
less than 0.05. The enrichment score is the sum of all pairwise
comparisons for each gene. Thus, the enrichment score can be used
to benchmark expression levels in one tissue compared to all other
tissues to identify genes that are tissue specific. The widely
expressed genes score low and around 0, while genes that are
specific score closer to 1. Moreover, in the transcript expression
heatmap, colors correspond to the level of enrichment in each
tissue or cell type (green = depleted, black = no enrichment,
red = enriched). Further information about this online tool can be
found in the work completed by Benita et al. (2010).

In addition, to explore the biological significance of the identi-
fied genes, we performed pathway enrichment analysis by using
DAVID Bioinformatics Resources 6.7 (Huang da, Sherman, &
Lempicki, 2009). Fisher exact tests were conducted in DAVID to
compute the P-value for each KEGG pathway (Kanehisa et al., 2010),
which were then adjusted by Benjamini & Hochberg (BH)'s method
(Benjamini & Hochberg, 1995). Since the adjusted P-value <0.05,
the query gene list is specifically enriched in the resultant pathway
than random chance.

In addition to the running time of PLINK, within a Windows
framework, it took ~12 h on a server (3.00 GHz Quad Core Intel (R)
CPU Q9650 and 4.00 GB of RAM, four threads) to perform our
PINBA.

3. Results
3.1. PINBA

Using different parameters (d, ) in dmGWAS, we obtained gene
sets with different module sizes. Fig. 1 showed the comparison of
module size with different r values. When r is small, the size of
modules tends to be large (e.g., when r = 0.05, average number of
module genes is 17.7), and non-specific nodes might be included
and, thus, weaken the signal. When r is large, the size of the
modules becomes small (e.g., when r = 0.2, it is 6.7, slightly larger
than the minimum number of genes for a module, 5), and possibly
excluding informative genes from the module. It illustrated that our
results using d = 2 and r = 0.1 worked well and sensitively (average
number of genes is 10.6). Then, we performed DMS with the
appropriate parameters (d = 2, r = 0.1) to search candidate modules
that were significantly enriched for schizophrenia. We provide the
information of gene-wise P-value in Table S1, which could subse-
quently be used to calculate Z;; in this study.

After performing dense module search, we observed that there
are 8472 candidate modules. The normalized module score (Zy) of
this module set was within the range of 3.24 to 7.70. Using the
formula: Pz, = 1 — ¢(Zy), we transformed the Zy back to P-value.
However, Pz, was within the range of 5.98 x 107 to 6.77 x 107>,
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Fig. 1. Comparison of module size with different r values in dense module searching. It
showed that when r is small, the size of modules tends to be large (e.g., when r = 0.05,
average number of module genes is 17.7). When r is large, the size of the modules
becomes small (e.g., when r = 0.2, it is 6.7, slightly larger than the minimum number of
genes for a module, 5). It illustrated that our results using d = 2 and r = 0.1 worked
well and sensitively (average number of genes is 10.6).
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Table 1

Pathway enrichment analysis of module genes.
Pathway names Counts®  Pathway  P-value® Padj“ Genes®

size”
hsa04520:Adherens junction 9 73 1.43E-05 1.35E-03  MAP3K7, PTPRJ, TJP1, RAC1, SMAD3, ACTN1, SMAD2, PTPN1, SRC
hsa05212:Pancreatic cancer 7 70 6.08E-04  2.85E-02  RACI, SMAD3, RALA, PIK3CA.NFKB1, SMAD2, STAT3
hsa05200:Pathways in cancer 8 108 8.69E-04 2.72E-02 PRKCA, GRB2, SMAD3, RUNX1T1, FADD, RAC1, NFKB1, SMAD2, ZBTB16,
STAT3, CBLC, RASSF5, RALA, PIK3CA

hsa04660:T cell receptor signaling pathway 8 127 9.71E-04  2.28E-02  MAP3K?7, CBLC, GRB2, CARD11, PAK7, , PIK3CA, NFKB1, MAP2K7
hsa05221:Acute myeloid leukemia 8 132 1.52E-03 2.85E-02 GRB2, RUNX1TI, PIK3CA, NFKB1, ZBTB16, STAT3
hsa04012:ErbB signaling pathway 7 87 1.65E-03  2.58E-02  PRKCA, CBLC, PAK7, GRB2, PIK3CA, MAP2K7, SRC
hsa04722:Neurotrophin signaling pathway 8 128 2.17E-03  2.91E-02  GRB2, RAC1, YWHAQ, PIK3CA, NFKB1, KIDINS220, MAP2K7, PTPN11
hsa04530:Tight junction 6 57 3.37E-03 3.93E-02 PRKCA, EPB411L2, INADL, TJP1, CLDN1, PRKCH, ACTN1, SRC
hsa04620:Toll-like receptor signaling pathway 7 102 3.52E-03  3.65E-02  MAP3K?7, RACI1, PIK3CA, NFKB1, FADD, IL12B, MAP2K7
hsa04662:B cell receptor signaling pathway 8 155 472E-03  4.39E-02  CARDI11, FCGR2B, GRB2, RAC1, PIK3CA, NFKB1

The total number of module genes observed in the pathway.
The total number of genes in this pathway.

P-values adjusted by Benjamini & Hochberg (BH) method (Benjamini & Hochberg, 1995), the significance cutoff P-value 0.05 was used.

a
b
¢ P-values from pathway enrichment test.
d
e

The list of identified genes in the pathway.

thus, it would generate too many modules with Py, as the criterion,
so we selected the modules whose Zy scores were within the top 1%
in module score distribution for the follow up analysis (Jia et al.,
2011). After the permutation tests, all the selected modules were
significant (Pper < 1 X 1073), indicating that they were not only
significantly enriched but also associated with schizophrenia.

We listed the gene-wise P-values of 184 resultant genes at the
top of Table S1. To better understand the interaction among the
resultant genes networks, we listed the protein-interaction
involved in the 184 resultant genes in Table S2.

From GWAS catalog, we found that VRK2, NFKB1, SPTLC1, ERC2,
SLC17A1 had all been previously identified in GWAS (Bergen et al.,
2012; Curtis et al, 2011; Liou et al., 2012; Shi et al, 2009;
Steinberg et al., 2011). It is worth noting that NFKB1 was also
identified in GWAS performed in the Han Chinese population (Liou
et al., 2012). Compared to the resultant genes to the work of Ayalew
et al. (2012), we found 6 overlapped genes (DISC1, GRIN2B, GSN,
PRKCA, PDE4B, and GRM5). These demonstrates that our results
confirmed previous findings.

3.2. Gene expression profiling analysis and pathway enrichment
analysis

In the transcript expression heatmap (Fig. S1), more than half of
these genes were highly expressed in immune-related cell types
(specifically B, T and myeloid cells) and the CNS tissues. In addition,
from transcript enrichment heatmap (Fig. S2), we found genes
identified in the PPI network were preferentially expressed in CNS
tissues, immune cell types and tissues. Particularly, the results of
our pathway enrichment analysis also suggested that these genes
are involved in processes related to neural and immune systems.
Table 1 shows the results of the pathway enrichment analyses of
the identified gene set by DAVID using KEGG pathways (Kanehisa
et al.,, 2010).

4. Discussion

Schizophrenia is a complex neuropsychiatric disorder with high
heritability. To date, multiple GWAS of schizophrenia have been
conducted and many pivotal schizophrenia susceptibility genes
have been identified. So far, most traditional GWAS have focused on
the strongest association signals, but many weakly or moderately
significant signals may also provide a valuable insight. A larger
number of loci with weakly or moderately significant signals may
affect relevant mechanisms in a cumulative effect. Therefore, in this
study, we have applied DMS to identify densely connected modules

in the human protein-interaction that conjoins loci of strong to
weak significance. By performing the DMS, we successfully identi-
fied a gene set of 184 susceptibility genes that may play a role in the
etiology of schizophrenia. Most of the resultant genes had relatively
moderate effect sizes, making them unlikely findings in traditional
single-marker Genome-Wide-Analyses (GWA) of schizophrenia.

The module genes that we identified mainly consisted of neural-
and immune-related genes, for example, we found genes involved
in GABA receptor (GABRB1, GABARAP), genes from the 14-3-3 pro-
tein family (YWHAQ), genes involved in glutamate receptor (GRM5),
genes located in the MHC region (HLA-C, TAP2, HIST1H1B) and well-
studied candidate genes for schizophrenia (DISC1, GRIN2B). In
addition, we also conducted the gene expression profiling analysis,
and found most genes identified in the PPI network were prefer-
entially expressed in CNS tissues, immune cell types and tissues.
Furthermore, when performing the pathway enrichment analysis,
we found the resultant pathways are related with the neuropa-
thology and immune systems. The results of pathway enrichment
analysis conform to the findings of Gene Expression Profiling
Analysis. The results not only provide further evidence that
schizophrenia is a complex disease involving immune systems
(Purcell et al., 2009; Shi et al., 2009; Stefansson et al., 2009), but
also indicate that the resultant genes identified in the modules are
expressed in brain tissues, suggesting these genes may play
important roles in brain function. In fact, more and more evidence
suggested immune-related genes may play important roles in
schizophrenia. For example, several GWAS revealed that many
immune genes are significantly associated with schizophrenia
(Ripke et al., 2011; Stefansson et al., 2009; Steinberg et al., 2011),
and dysregulation of immune-associated genes were frequently
observed in schizophrenia patients (Fillman et al., 2013; Gardiner
et al., 2013). Altogether, our findings could help form a better un-
derstanding of the implications of gene sets on schizophrenia
progression and lead to the identification of susceptibility genes
associated with these pathways, which could be possible targets for
drug development. From these identified gene sets, we might
discover better and more accurate biomarkers for personalized
therapies and treatment (Barabasi, Gulbahce, & Loscalzo, 2011). For
example, in our findings, GRIN2B genetic variations might influence
the effect of clozapine on Chinese patients (Chiu, Wang, Liou, Lai, &
Chen, 2003). DISC1 was found to be statistically linked with ultra-
resistance to antipsychotic treatment (Mouaffak et al., 2011).

Our findings also confirmed the earlier observation that
immune-related and neural pathways were involved in schizo-
phrenia susceptibility. O’Dushlaine et al. found several neural
pathways involved in processes critical to neurodevelopment and
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synaptic function (O’'Dushlaine et al., 2011). Jia et al. also identified
several immune related pathways associated with schizophrenia
(Jia et al., 2012). In our results, the Neurotrophin signaling pathway
(hsa04722) plays an important role in differentiation and survival
of neural cells and is involved in key stages of the formation of the
neuronal network; the Tight junction (hsa04530) pathway is rele-
vant to synaptic formation and neurotransmission at glutamatergic
and GABAergic synapses (Kang, Zhang, Dobie, Wu, & Craig, 2008);
the ErbB signaling pathway (hsa04012) participates in cognitive
dysfunction in schizophrenia by aberrantly suppressing Src-
mediated enhancement of synaptic NMDAR function (Pitcher
et al,, 2011). The T cell receptor signaling pathway (hsa04660), B
cell receptor signaling pathway (hsa04662) and the Toll-like re-
ceptor signaling pathway (hsa04620) are well-known pathways
involved in immune system function. Interestingly, we find four
pathways involved in malignant tumors, the pancreatic cancer
pathway (hsa05212), the Pathways in cancer (hsa05200), the Acute
myeloid leukemia pathway (hsa05221), and the Chronic myeloid
leukemia pathway (hsa05220). However, the identified genes in the
four pathways are mainly immune-related genes and the details are
shown in Table 1.

To our knowledge, our study is the first attempt at integration of
protein-interaction data with GWAS data in relation to schizo-
phrenia in Han Chinese population. Our findings not only
confirmed previous findings, but also highlighted new suscepti-
bility genes and pathways underlying schizophrenia. These new-
found genes and pathways may be peculiar susceptibility genes
in Han Chinese population, but further experimental approaches
are warranted for determining which are the functionally relevant
associations in each of these genes. These resultant genes were not
found in our previous GWAS. Hence, the PINBA method has iden-
tified some of the missing heritability of our GWAS data and will
contribute to the identification of new genetic factors underlying
schizophrenia in the Han Chinese population.

Our network-based approach has strengths and limitations.
Compared with pathway-based methods, the network-based anal-
ysis allows for the definition of de novo gene sets by dynamically
searching for interconnected subnetworks in the whole PPI network,
but the pathway-based analysis over-limited to a priori knowledge.
In addition, the association signals from GWAS might cover only a
small portion of the pathway reducing its power; however, the
network-based methods effectively alleviate the limitation of the
fixed size in pathway analysis. This work also has a few limitations.
First, it is still not clear what the best strategy is to condense sta-
tistics for multiple SNPs within a gene into a single value for the gene
(Wang, Li, & Hakonarson, 2010). In present study, we used the most
popular method, taking the minimum SNP-level P-value to repre-
sent the significance of each gene (Arning et al., 2012; Wang et al.,
2007; Wang et al., 2010). However, using this strategy, larger
genes are more likely to have lower minimum P-values based on
chance alone. And we have also compared the SNP numbers for each
of the 184 resultant genes to all genes in the genome and found there
was significant difference (Mann—Whitney test, P < 0.05). A partial
remedy for such a bias is to normalize gene-set score. And we used a
two-step correction procedure and preserved the type I error rate
across genes of different size. Moreover, the 184 reported genes have
all passed the corrections. Second, our network-based analysis was
based on computational strategies. The modules were built on
available human PPI datasets. The informative results generated by
this approach generally require extensive experimental validation
and the number and quality of protein interactions has recently
improved greatly, the human PPI datasets are still constantly
improving. Third, similar to single-marker-based association test,
network-based analysis may also be susceptible to false-positive
results and thus should be appropriately replicated in independent

datasets. Due to limitation of conditions, we have not validated the
association by replication analysis at this point in time. And we
intend to verify the results in a replication study in the future.

In conclusion, our approach suggests that integration of protein-
interaction data with a GWA study of schizophrenia can yield
potentially interesting sets of susceptibility genes that would be
missed in traditional GWAS. We identified one gene set of 184
genes that mainly preferentially expressed in CNS tissues, immune
cell types and tissues. Additionally, the resultant genes were also
enriched in neural- and immune-related pathways. Confirmation of
these genes in replication studies or follow-up experimental
studies may promote the study of the genetic mechanisms of
schizophrenia in Han Chinese population.
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